资源类型

期刊论文 622

会议视频 6

年份

2023 42

2022 48

2021 42

2020 51

2019 48

2018 19

2017 22

2016 23

2015 25

2014 27

2013 23

2012 25

2011 27

2010 34

2009 24

2008 26

2007 32

2006 18

2005 21

2004 5

展开 ︾

关键词

动力特性 6

动态规划 5

有限元 5

有限元法 4

ANSYS 3

动力响应 3

动力学 3

裂缝 3

三维有限元 2

力学性能 2

动力气垫 2

动态 2

动态性能 2

动态模拟 2

动态特性 2

动态管理 2

可视化仿真 2

扬矿管 2

有限元分析 2

展开 ︾

检索范围:

排序: 展示方式:

Application of consistent geometric decomposition theorem to dynamic finite element of 3D composite beam

Iman FATTAHI, Hamid Reza MIRDAMADI, Hamid ABDOLLAHI

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 675-689 doi: 10.1007/s11709-020-0625-4

摘要: Analyzing static and dynamic problems including composite structures has been of high significance in research efforts and industrial applications. In this article, equivalent single layer approach is utilized for dynamic finite element procedures of 3D composite beam as the building block of numerous composite structures. In this model, both displacement and strain fields are decomposed into cross-sectional and longitudinal components, called consistent geometric decomposition theorem. Then, the model is discretized using finite element procedures. Two local coordinate systems and a global one are defined to decouple mechanical degrees of freedom. Furthermore, from the viewpoint of consistent geometric decomposition theorem, the transformation and element mass matrices for those systems are introduced here for the first time. The same decomposition idea can be used for developing element stiffness matrix. Finally, comprehensive validations are conducted for the theory against experimental and numerical results in two case studies and for various conditions.

关键词: composite beam     dynamic finite element     degrees of freedom coupling     experimental validation     numerical validation    

Improved numerical method for time domain dynamic structure-foundation interaction analysis based onscaled boundary finite element method

DU Jianguo, LIN Gao

《结构与土木工程前沿(英文)》 2008年 第2卷 第4期   页码 336-342 doi: 10.1007/s11709-008-0054-2

摘要: Based on the reduced set of base function in scaled boundary finite element method (SBFEM), an improved time domain numerical approach for the dynamic structure-foundation interaction analysis was proposed. With reasonable choice of the number of base functions, the degrees of freedom on the structure-foundation interface were reduced and the associated computation for the calculation of convolution integral was greatly reduced. The results of this proposed approach applied to the calculation of a gravity dam and an arch dam. The acceleration frequency response functions were calculated and the influences affected by different reduced set of base functions as well as full set were compared. It was found that a higher degree of reduced set of base functions resulted in a significant increase of computational efficiency but a little bit of loss in accuracy. When the reduced set was decreased by 60%, the efficiency may be increased to up to five times, while the loss of accuracy of peak value of response will be less than 4%. It may be concluded that the proposed approach is suitable for large-scale structure-foundation interaction analysis.

关键词: structure-foundation interface     computational efficiency     different     suitable     numerical approach    

Explicit finite element method for calculation and analysis to the elasto-plastic dynamic response of

LI Liang, DU Xiuli, LI Liyun, ZHAO Chenggang

《结构与土木工程前沿(英文)》 2007年 第1卷 第4期   页码 436-442 doi: 10.1007/s11709-007-0059-2

摘要: In order to describe the elasto-plastic dynamic response of fluid-saturated porous media, the incremental elasto-plastic wave propagation equations of fluid-saturated porous media are developed by the fundamental theory of continuum mechanics and appointing to the characteristic of fluid-saturated porous media. Then, the space discretization of these equations is performed to get their Galerkin formula. At last, the time discretization of this formula is carried out with the integral method which consists of central difference method and Newmark constant average acceleration method to get the explicit time integral formula for solving the wave propagation equations of porous media. On the basis of the integral formula mentioned above, the time-domain explicit finite element method is developed for calculation and analysis of the elasto-plastic dynamic response of fluid-saturated porous media. In this method, the decoupling technique is adopted and it does not need to solve simultaneous linear equations in each time step, so the computational effort and memory requirement can be reduced considerably by using this method.

关键词: discretization     computational     calculation     integral     requirement    

Dynamic failure analysis of concrete dams under air blast using coupled Euler-Lagrange finite element

Farhoud KALATEH

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 15-37 doi: 10.1007/s11709-018-0465-7

摘要: In this study, the air blast response of the concrete dams including dam-reservoir interaction and acoustic cavitation in the reservoir is investigated. The finite element (FE) developed code are used to build three-dimensional (3D) finite element models of concrete dams. A fully coupled Euler-Lagrange formulation has been adopted herein. A previous developed model including the strain rate effects is employed to model the concrete material behavior subjected to blast loading. In addition, a one-fluid cavitating model is employed for the simulation of acoustic cavitation in the fluid domain. A parametric study is conducted to evaluate the effects of the air blast loading on the response of concrete dam systems. Hence, the analyses are performed for different heights of dam and different values of the charge distance from the charge center. Numerical results revealed that 1) concrete arch dams are more vulnerable to air blast loading than concrete gravity dams; 2) reservoir has mitigation effect on the response of concrete dams; 3) acoustic cavitation intensify crest displacement of concrete dams.

关键词: air blast loading     concrete dams     finite element     dam-reservoir interaction     cavitation     concrete damage model    

Dynamic test and finite element model updating of bridge structures based on ambient vibration

HUANG Minshui, ZHU Hongping, LI Lin, GUO Wenzeng

《结构与土木工程前沿(英文)》 2008年 第2卷 第2期   页码 139-144 doi: 10.1007/s11709-008-0028-4

摘要: The dynamic characteristics of bridge structures are the basis of structural dynamic response and seismic analysis, and are also an important target of health condition monitoring. In this paper, a three-dimensional finite-element model is first established for a highway bridge over a railroad on No.312 National Highway. Based on design drawings, the dynamic characteristics of the bridge are studied using finite element analysis and ambient vibration measurements. Thus, a set of data is selected based on sensitivity analysis and optimization theory; the finite element model of the bridge is updated. The numerical and experimental results show that the updated method is more simple and effective, the updated finite element model can reflect the dynamic characteristics of the bridge better, and it can be used to predict the dynamic response under complex external forces. It is also helpful for further damage identification and health condition monitoring.

关键词: numerical     effective     Highway     vibration     complex external    

Application of semi-analytical finite element method to analyze the bearing capacity of asphalt pavements

Pengfei LIU, Dawei WANG, Frédéric OTTO, Markus OESER

《结构与土木工程前沿(英文)》 2018年 第12卷 第2期   页码 215-221 doi: 10.1007/s11709-017-0401-2

摘要: To facilitate long term infrastructure asset management systems, it is necessary to determine the bearing capacity of pavements. Currently it is common to conduct such measurements in a stationary manner, however the evaluation with stationary loading does not correspond to reality a tendency towards continuous and high speed measurements in recent years can be observed. The computational program SAFEM was developed with the objective of evaluating the dynamic response of asphalt under moving loads and is based on a semi-analytic element method. In this research project SAFEM is compared to commercial finite element software ABAQUS and field measurements to verify the computational accuracy. The computational accuracy of SAFEM was found to be high enough to be viable whilst boasting a computational time far shorter than ABAQUS. Thus, SAFEM appears to be a feasible approach to determine the dynamic response of pavements under dynamic loads and is a useful tool for infrastructure administrations to analyze the pavement bearing capacity.

关键词: semi-analytical finite element method     bearing capacity     asphalt pavements     moving loads     dynamic response    

CFRP索斜拉桥动态特性的有限元分析及动态试验

蔡东升,刘荣桂,许飞,周士金

《中国工程科学》 2010年 第12卷 第2期   页码 16-21

摘要:

介绍了国内首座CFRP索斜拉桥的工程概况;建立了该桥的三维空间梁壳杆系有限元动态分析模型,进行了结构动态特性有限元分析;进行了环境激励下国内首座CFRP索斜拉桥结构动态特性的测试,结合试验结果对国内首座CFRP索斜拉桥的动态特性进行了分析。同时,将实桥动态试验结果与有限元动态特性分析结果进行了对比分析。结果表明,有限元动态特性分析的低阶频率和振型与试验测得的频率与振型结果基本吻合。笔者等试验及相关研究分析结论可为CFRP索桥梁的动态建模、动态特性分析、抗震抗风设计及CFRP新型缆索材料在桥梁工程中的进一步推广应用提供一定的参考依据。

关键词: CFRP索斜拉桥     动态特性     有限元分析     环境激励     动态试验    

Dynamic analysis of a rig shafting vibration based on finite element

Van Thanh NGO, Danmei XIE, Yangheng XIONG, Hengliang ZHANG, Yi YANG

《机械工程前沿(英文)》 2013年 第8卷 第3期   页码 244-251 doi: 10.1007/s11465-013-0264-8

摘要:

In recently, finite elements method (FEM) has been used most popular for analysis of stress, vibration, heat flow and many other phenomena. Taking a rig shafting as an example, this paper studies the lateral vibration of the rig shafting with multi-degree-of-freedom by using FEM. The FEM model is created and the eigenvalues and eigenvectors are calculated and analyzed to find natural frequencies, critical speeds, mode shapes and unbalance responses. Then critical and mode shapes are determined. Finally, responses of unbalance force are analyzed in case of undamped and damped system, and peaks of response are compared.

关键词: Finite element method (FEM)     lateral vibration     rig shafting     rotor-bearing system     dynamic characteristics    

Identification of dynamic stiffness matrix of bearing joint region

Feng HU, Bo WU, Youmin HU, Tielin SHI

《机械工程前沿(英文)》 2009年 第4卷 第3期   页码 289-299 doi: 10.1007/s11465-009-0064-3

摘要: The paper proposes an identification method of the dynamic stiffness matrix of a bearing joint region on the basis of theoretical analysis and experiments. The author deduces an identification model of the dynamic stiffness matrix from the synthetic substructure method. The dynamic stiffness matrix of the bearing joint region can be identified by measuring the matrix of frequency response function (FRFs) of the substructure (axle) and whole structure (assembly of the axle, bearing, and bearing housing) in different positions. Considering difficulty in measuring angular displacement, applying moment, and directly measuring relevant FRFs of rotational degree of freedom, the author employs an accurately calibrated finite element model of the unconstrained structure for indirect estimation. With experiments and simulation analysis, FRFs related with translational degree of freedom, which is estimated through the finite element model, agrees with experimental results, and there is very high reliability in the identified dynamic stiffness matrix of the bearing joint region.

关键词: frequency response function (FRFs)     dynamic stiffness     finite element     synthetic substructure method     joint region    

Finite element modeling of cable sliding and its effect on dynamic response of cable-supported truss

Yujie YU, Zhihua CHEN, Renzhang YAN

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1227-1242 doi: 10.1007/s11709-019-0551-5

摘要: The cable system of cable-supported structures usually bears high tension forces, and clip joints may fail to resist cable sliding in cases of earthquake excitations or sudden cable breaks. A analytical method that considers the dynamic cable sliding effect is proposed in this paper. Cable sliding behaviors and the resultant dynamic responses are solved by combining the vector form intrinsic finite element framework with cable force redistribution calculations that consider joint frictions. The cable sliding effect and the frictional tension loss are solved with the original length method that uses cable length and the original length relations. Then, the balanced tension distributions are calculated after frictional sliding. The proposed analytical method is achieved within MATLAB and applied to simulate the dynamic response of a cable-supported plane truss under seismic excitation and sudden cable break. During seismic excitations, the cable sliding behavior in the cable-supported truss have an averaging effect on the oscillation magnitudes, but it also magnifies the internal force response in the upper truss structure. The slidable cable joints can greatly reduce the ability of a cable system to resist sudden cable breaks, while strong friction resistances at the cable-strut joints can help retain internal forces.

关键词: sliding cable     explicit solution framework     original length method     seismic response     cable rupture    

Special Column on Multiscale Stochastic Finite Element Method

《结构与土木工程前沿(英文)》 2015年 第9卷 第2期   页码 105-106 doi: 10.1007/s11709-015-0297-7

The smoothed finite element method (S-FEM): A framework for the design of numerical models for desired

Gui-Rong Liu

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 456-477 doi: 10.1007/s11709-019-0519-5

摘要:

The smoothed finite element method (S-FEM) was originated by G R Liu by combining some meshfree techniques with the well-established standard finite element method (FEM). It has a family of models carefully designed with innovative types of smoothing domains. These models are found having a number of important and theoretically profound properties. This article first provides a concise and easy-to-follow presentation of key formulations used in the S-FEM. A number of important properties and unique features of S-FEM models are discussed in detail, including 1) theoretically proven softening effects; 2) upper-bound solutions; 3) accurate solutions and higher convergence rates; 4) insensitivity to mesh distortion; 5) Jacobian-free; 6) volumetric-locking-free; and most importantly 7) working well with triangular and tetrahedral meshes that can be automatically generated. The S-FEM is thus ideal for automation in computations and adaptive analyses, and hence has profound impact on AI-assisted modeling and simulation. Most importantly, one can now purposely design an S-FEM model to obtain solutions with special properties as wish, meaning that S-FEM offers a framework for design numerical models with desired properties. This novel concept of numerical model on-demand may drastically change the landscape of modeling and simulation. Future directions of research are also provided.

关键词: computational method     finite element method     smoothed finite element method     strain smoothing technique     smoothing domain     weakened weak form     solid mechanics     softening effect     upper bound solution    

Thermal buckling behavior of laminated composite plates: a finite-element study

Houdayfa OUNIS,Abdelouahab TATI,Adel BENCHABANE

《机械工程前沿(英文)》 2014年 第9卷 第1期   页码 41-49 doi: 10.1007/s11465-014-0284-z

摘要:

In this paper, the thermal buckling behavior of composite laminated plates under a uniform temperature distribution is studied. A finite element of four nodes and 32 degrees of freedom (DOF), previously developed for the bending and mechanical buckling of laminated composite plates, is extended to investigate the thermal buckling behavior of laminated composite plates. Based upon the classical plate theory, the present finite element is a combination of a linear isoparametric membrane element and a high precision rectangular Hermitian element. The numerical implementation of the present finite element allowed the comparison of the numerical obtained results with results obtained from the literature: 1) with element of the same order, 2) the first order shear deformation theory, 3) the high order shear deformation theory and 4) the three-dimensional solution. It was found that the obtained results were very close to the reference results and the proposed element offers a good convergence speed. Furthermore, a parametrical study was also conducted to investigate the effect of the anisotropy of composite materials on the critical buckling temperature of laminated plates. The study showed that: 1) the critical buckling temperature generally decreases with the increasing of the modulus ratio EL/ET and thermal expansion ratio αT/αL, and 2) the boundary conditions and the orientation angles significantly affect the critical buckling temperature of laminated plates.

关键词: thermal buckling     laminated composite plates     anisotropy     critical buckling temperature     finite-element method     high precision rectangular Hermitian element    

Multiscale stochastic finite element method on random field modeling of geotechnical problems – a fast

Xi F. XU

《结构与土木工程前沿(英文)》 2015年 第9卷 第2期   页码 107-113 doi: 10.1007/s11709-014-0268-4

摘要: The Green-function-based multiscale stochastic finite element method (MSFEM) has been formulated based on the stochastic variational principle. In this study a fast computing procedure based on the MSFEM is developed to solve random field geotechnical problems with a typical coefficient of variance less than 1. A unique fast computing advantage of the procedure enables computation performed only on those locations of interest, therefore saving a lot of computation. The numerical example on soil settlement shows that the procedure achieves significant computing efficiency compared with Monte Carlo method.

关键词: multiscale     finite element     settlement     perturbation     random field     geotechnical    

Finite element analysis of controlled low strength materials

Vahid ALIZADEH

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1243-1250 doi: 10.1007/s11709-019-0553-3

摘要: Controlled low strength materials (CLSM) are flowable and self-compacting construction materials that have been used in a wide variety of applications. This paper describes the numerical modeling of CLSM fills with finite element method under compression loading and the bond performance of CLSM and steel rebar under pullout loading. The study was conducted using a plastic-damage model which captures the material behavior using both classical theory of elasto-plasticity and continuum damage mechanics. The capability of the finite element approach for the analysis of CLSM fills was assessed by a comparison with the experimental results from a laboratory compression test on CLSM cylinders and pullout tests. The analysis shows that the behavior of a CLSM fill while subject to a failure compression load or pullout tension load can be simulated in a reasonably accurate manner.

关键词: CLSM     finite element method     compressive strength     pullout     numerical modeling     plastic damage model    

标题 作者 时间 类型 操作

Application of consistent geometric decomposition theorem to dynamic finite element of 3D composite beam

Iman FATTAHI, Hamid Reza MIRDAMADI, Hamid ABDOLLAHI

期刊论文

Improved numerical method for time domain dynamic structure-foundation interaction analysis based onscaled boundary finite element method

DU Jianguo, LIN Gao

期刊论文

Explicit finite element method for calculation and analysis to the elasto-plastic dynamic response of

LI Liang, DU Xiuli, LI Liyun, ZHAO Chenggang

期刊论文

Dynamic failure analysis of concrete dams under air blast using coupled Euler-Lagrange finite element

Farhoud KALATEH

期刊论文

Dynamic test and finite element model updating of bridge structures based on ambient vibration

HUANG Minshui, ZHU Hongping, LI Lin, GUO Wenzeng

期刊论文

Application of semi-analytical finite element method to analyze the bearing capacity of asphalt pavements

Pengfei LIU, Dawei WANG, Frédéric OTTO, Markus OESER

期刊论文

CFRP索斜拉桥动态特性的有限元分析及动态试验

蔡东升,刘荣桂,许飞,周士金

期刊论文

Dynamic analysis of a rig shafting vibration based on finite element

Van Thanh NGO, Danmei XIE, Yangheng XIONG, Hengliang ZHANG, Yi YANG

期刊论文

Identification of dynamic stiffness matrix of bearing joint region

Feng HU, Bo WU, Youmin HU, Tielin SHI

期刊论文

Finite element modeling of cable sliding and its effect on dynamic response of cable-supported truss

Yujie YU, Zhihua CHEN, Renzhang YAN

期刊论文

Special Column on Multiscale Stochastic Finite Element Method

期刊论文

The smoothed finite element method (S-FEM): A framework for the design of numerical models for desired

Gui-Rong Liu

期刊论文

Thermal buckling behavior of laminated composite plates: a finite-element study

Houdayfa OUNIS,Abdelouahab TATI,Adel BENCHABANE

期刊论文

Multiscale stochastic finite element method on random field modeling of geotechnical problems – a fast

Xi F. XU

期刊论文

Finite element analysis of controlled low strength materials

Vahid ALIZADEH

期刊论文